International Journal of Advanced Robotic Systems (Jan 2018)
Methodology for the navigation optimization of a terrain-adaptive unmanned ground vehicle
Abstract
The goal of this article is to design a navigation algorithm to improve the capabilities of an all-terrain unmanned ground vehicle by optimizing its configuration (the angles between its legs and its body) for a given track profile function. The track profile function can be defined either by numerical equations or by points. The angles between the body and the legs can be varied in order to improve the adaptation to the ground profiles. A new dynamic model of an all-terrain vehicle for unstructured environments has been presented. The model is based on a half-vehicle and a quasi-static approach and relates the dynamic variables of interest for navigation with the topology of the mechanism. The algorithm has been created using a simple equation system. This is an advantage over other algorithms with more complex equations which need more time to be calculated. Additionally, it is possible to optimize to any ground-track-profile of any terrain. In order to prove the soundness of the algorithm developed, some results of different applications have been presented.