Complexity (Jan 2018)
Research on Multidomain Fault Diagnosis of Large Wind Turbines under Complex Environment
Abstract
Under the complicated environment of large wind turbines, the vibration signal of a wind turbine has the characteristics of coupling and nonlinearity. The traditional feature extraction method for the signal is hard to accurately extract fault information, and there is a serious problem of information redundancy in fault diagnosis. Therefore, this paper proposed a multidomain feature fault diagnosis method based on complex empirical mode decomposition (CEMD) and random forest theory (RF). Firstly, this paper proposes a novel method of complex empirical mode decomposition by using the correlation information between two-dimensional signals and utilizing the idea of ensemble empirical mode decomposition (EEMD) by adding white noise to suppress the problem mode mixing in empirical mode decomposition (EMD). Secondly, the collected vibration signals are decomposed into IMFs by CEMD. Then, calculate 11 time domain characteristic parameters and 13 frequency domain characteristic parameters of the vibration signal, and calculate the energy and energy entropy of each IMF components. Make all the characteristic parameters as the multidomain feature vectors of wind turbines. Finally, the redundant feature vectors are eliminated by the importance of each feature vector which has been calculated, and the feature vectors selected are input to the random forest classifier to achieve the fault diagnosis of large wind turbines. Simulation and experimental results show that this method can effectively extract the fault feature of the signal and achieve the fault diagnosis of wind turbines, which has a higher accuracy of fault diagnosis than the traditional classification methods.