Nanomaterials (Jul 2021)

Linking Bi-Metal Distribution Patterns in Porous Carbon Nitride Fullerene to Its Catalytic Activity toward Gas Adsorption

  • Parisa Nematollahi,
  • Erik C. Neyts

DOI
https://doi.org/10.3390/nano11071794
Journal volume & issue
Vol. 11, no. 7
p. 1794

Abstract

Read online

Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0–6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H2, and N2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.

Keywords