Catalysts (Feb 2022)

Immobilization of Lipases on Modified Silica Clay for Bio-Diesel Production: The Effect of Surface Hydrophobicity on Performance

  • Youdan Duan,
  • Ting Zou,
  • Sijin Wu,
  • Haiming Cheng

DOI
https://doi.org/10.3390/catal12020242
Journal volume & issue
Vol. 12, no. 2
p. 242

Abstract

Read online

The hydrophobicity of a support plays a critical role in the catalytic efficiency of immobilized lipases. 3-aminopropyltriethoxysilane (APTES)-modified silica clay (A-SC) was coupled with silane coupling agents of different alkyl chains (methyl triethoxysilane, vinyl triethoxysilane, octyl triethoxysilane, and dodecyl triethoxysilane) to prepare a series of hydrophobic support for lipase immobilization. The lipases were immobilized onto the support by conducting glutaraldehyde cross-linking processes. The results showed that the activity of the immobilized biocatalyst increased with hydrophobicity. The hydrolytic activity of Lip-Glu-C12-SC (contact angle 119.8°) can reach 5900 U/g, which was about three times that of Lip-Glu-A-SC (contact angle 46.5°). The immobilized lipase was applied as a biocatalyst for biodiesel production. The results showed that the catalytic yield of biodiesel with highly hydrophobic Lip-Glu-C12-SC could be as high as 96%, which is about 30% higher than that of Lip-Glu-A-SC. After being recycled five times, the immobilized lipase still maintained good catalytic activity and stability. This study provides a good strategy to improve the efficiency of immobilized lipases, showing great potential for future industrial application on biodiesel production.

Keywords