PLoS ONE (Jan 2024)
Neural correlates of bilateral proprioception and adaptation with training.
Abstract
Bilateral proprioception includes the ability to sense the position and motion of one hand relative to the other, without looking. This sensory ability allows us to perform daily activities seamlessly, and its impairment is observed in various neurological disorders such as cerebral palsy and stroke. It can undergo experience-dependent plasticity, as seen in trained piano players. If its neural correlates were better understood, it would provide a useful assay and target for neurorehabilitation for people with impaired proprioception. We designed a non-invasive electroencephalography-based paradigm to assess the neural features relevant to proprioception, especially focusing on bilateral proprioception, i.e., assessing the limb distance from the body with the other limb. We compared it with a movement-only task, with and without the visibility of the target hand. Additionally, we explored proprioceptive accuracy during the tasks. We tested eleven Controls and nine Skilled musicians to assess whether sensorimotor event-related spectral perturbations in μ (8-12Hz) and low-β (12-18Hz) rhythms differ in people with musical instrument training, which intrinsically involves a bilateral proprioceptive component, or when new sensor modalities are added to the task. The Skilled group showed significantly reduced μ and low-β suppression in bilateral tasks compared to movement-only, a significative difference relative to Controls. This may be explained by reduced top-down control due to intensive training, despite this, proprioceptive errors were not smaller for this group. Target visibility significantly reduced proprioceptive error in Controls, while no change was observed in the Skilled group. During visual tasks, Controls exhibited significant μ and low-β power reversals, with significant differences relative to proprioceptive-only tasks compared to the Skilled group-possibly due to reduced uncertainty and top-down control. These results provide support for sensorimotor μ and low-β suppression as potential neuromarkers for assessing proprioceptive ability. The identification of these features is significant as they could be used to quantify altered proprioceptive neural processing in skill and movement disorders. This in turn can be useful as an assay for pre and post sensory-motor intervention research.