International Journal of Molecular Sciences (Aug 2023)

Neuroprotective Potential of L-Glutamate Transporters in Human Induced Pluripotent Stem Cell-Derived Neural Cells against Excitotoxicity

  • Kanako Takahashi,
  • Yuto Ishibashi,
  • Kaori Chujo,
  • Ikuro Suzuki,
  • Kaoru Sato

DOI
https://doi.org/10.3390/ijms241612605
Journal volume & issue
Vol. 24, no. 16
p. 12605

Abstract

Read online

Human induced pluripotent stem cell (hiPSC)-derived neural cells have started to be used in safety/toxicity tests at the preclinical stage of drug development. As previously reported, hiPSC-derived neurons exhibit greater tolerance to excitotoxicity than those of primary cultures of rodent neurons; however, the underlying mechanisms remain unknown. We here investigated the functions of L-glutamate (L-Glu) transporters, the most important machinery to maintain low extracellular L-Glu concentrations, in hiPSC-derived neural cells. We also clarified the contribution of respective L-Glu transporter subtypes. At 63 days in vitro (DIV), we detected neuronal circuit functions in hiPSC-derived neural cells by a microelectrode array system (MEA). At 63 DIV, exposure to 100 μM L-Glu for 24 h did not affect the viability of neural cells. 100 µM L-Glu in the medium decreased to almost 0 μM in 60 min. Pharmacological inhibition of excitatory amino acid transporter 1 (EAAT1) and EAAT2 suppressed almost 100% of L-Glu decrease. In the presence of this inhibitor, 100 μM L-Glu dramatically decreased cell viability. These results suggest that in hiPSC-derived neural cells, EAAT1 and EAAT2 are the predominant L-Glu transporters, and their uptake potentials are the reasons for the tolerance of hiPSC-derived neurons to excitotoxicity.

Keywords