AIMS Mathematics (Sep 2024)

$ (\theta_i, \lambda) $-constacyclic codes and DNA codes over $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $

  • Fatma Zehra Uzekmek ,
  • Elif Segah Oztas,
  • Mehmet Ozen

DOI
https://doi.org/10.3934/math.20241355
Journal volume & issue
Vol. 9, no. 10
pp. 27908 – 27929

Abstract

Read online

In this paper, three new automorphisms were identified over the ring $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $ where $ u^3 = u^2 $. With the help of these automorphisms, the characteristic structures of the generator polynomials for the $ \theta_i $-cyclic codes and $ (\theta_i, \lambda) $-constacyclic codes of odd length on this ring were investigated. Also, for all the units over the ring, $ \mathbb{Z}_{4} $-images of $ \theta_i $-cyclic and $ (\theta_i, \lambda) $-constacyclic codes were reviewed with the associated codes based on determined transformations. Using these observations, new and optimal codes were obtained and presented in the table. In addition, a new transformation was identified that involved DNA base pairs with the elements of $ \mathbb{Z}_{4} $. Moreover, a unit reverse polynomial was created, and in this way a new generation method has been built to construct reversible DNA codes over this ring. Finally, this article was further enhanced with supporting examples of the DNA as a part of the study.

Keywords