Foods (Aug 2023)

Metabolomic and Transcriptomic Analyses Reveal the Effects of Grafting on Nutritional Properties in Eggplant

  • Yaqin Yan,
  • Wuhong Wang,
  • Tianhua Hu,
  • Haijiao Hu,
  • Jinglei Wang,
  • Qingzhen Wei,
  • Chonglai Bao

DOI
https://doi.org/10.3390/foods12163082
Journal volume & issue
Vol. 12, no. 16
p. 3082

Abstract

Read online

Grafting has a significant impact on the botany properties, commercial character, disease resistance, and productivity of eggplants. However, the mechanism of phenotypic modulation on grafted eggplants is rarely reported. In this study, a widely cultivated eggplant (Solanum. melongena cv. ‘Zheqie No.10’) was selected as the scion and grafted, respectively, onto four rootstocks of TOR (S. torvum), Sa (S. aculeatissimum), SS (S. sisymbriifolium), and Sm64R (S. melongena cv. ‘Qiezhen No. 64R’) for phenotypic screening. Physiological and biochemical analysis showed the rootstock Sm64R could improve the fruit quality with the increasing of fruit size, yield, and the contents of total soluble solid, phenolic acid, total amino acid, total sugar, and vitamin C. To further investigate the improvement of fruit quality on Sm64R, a transcriptome and a metabolome between the Sm64R-grafted eggplant and self-grafted eggplant were performed. Significant differences in metabolites, such as phenolic acids, lipids, nucleotides and derivatives, alkaloids, terpenoids, and amino acids, were observed. Differential metabolites and differentially expressed genes were found to be abundant in three core pathways of nutritional qualities, including biosynthesis of phenylpropanoids, phospholipids, and nucleotide metabolism. Thus, this study may provide a novel insight into the effects of grafting on the fruit quality in eggplant.

Keywords