Energies (Jun 2022)
Removal of a Mixture of Seven Volatile Organic Compounds (VOCs) Using an Industrial Pilot-Scale Process Combining Absorption in Silicone Oil and Biological Regeneration in a Two-Phase Partitioning Bioreactor (TPPB)
Abstract
The treatment of a synthetic polluted gas containing seven volatile organic compounds (VOCs) was studied using a pilot plant in real industrial conditions. The process combined VOC absorption in silicone oil (PolyDiMethylSiloxane, i.e., PDMS), a biological regeneration of the PDMS in a two-phase partitioning bioreactor (TPPB), and a phase separation including settling and centrifugation. The TPPB was operated at a water/PDMS volume ratio of 75/25. The VOCs treatment performance was efficient during the entire test, corresponding to 10 PDMS regeneration cycles. The analysis of the content of the aqueous phase and PDMS confirmed that VOCs are progressively degraded until mineralization. The nitrogen consumption and the characterization of the microorganisms highlighted possible anoxic functioning of the biomass within the first decanter. Moreover, although the absorption and biodegradation performances were very satisfactory, the separation of all phases, essential for the PDMS recycling, was problematic due to the production of biosurfactants by the microorganisms, leading to the formation of a stable emulsion and foaming episodes. As a consequence, the packed column showed slight fouling. However, no significant increase in the pressure drop of the packed bed, as well as no significant impact on VOC absorption efficiency was observed.
Keywords