Frontiers in Physics (Dec 2021)

Burst Dynamics, Upscaling and Dissipation of Slow Drainage in Porous Media

  • Knut Jørgen Måløy,
  • Knut Jørgen Måløy,
  • Marcel Moura,
  • Alex Hansen,
  • Eirik Grude Flekkøy,
  • Eirik Grude Flekkøy,
  • Renaud Toussaint,
  • Renaud Toussaint

DOI
https://doi.org/10.3389/fphy.2021.796019
Journal volume & issue
Vol. 9

Abstract

Read online

We present a theoretical and experimental investigation of drainage in porous media. The study is limited to stabilized fluid fronts at moderate injection rates, but it takes into account capillary, viscous, and gravitational forces. In the theoretical framework presented, the work applied on the system, the energy dissipation, the final saturation and the width of the stabilized fluid front can all be calculated if we know the dimensionless fluctuation number, the wetting properties, the surface tension between the fluids, the fractal dimensions of the invading structure and its boundary, and the exponent describing the divergence of the correlation length in percolation. Furthermore, our theoretical description explains how the Haines jumps’ local activity and dissipation relate to dissipation on larger scales.

Keywords