Chemistry (Sep 2021)

Analysis of Local and Global Aromaticity in Si<sub>3</sub>C<sub>5</sub> and Si<sub>4</sub>C<sub>8</sub> Clusters. Aromatic Species Containing Planar Tetracoordinate Carbon

  • Juan J. Torres-Vega,
  • Diego R. Alcoba,
  • Ofelia B. Oña,
  • Alejandro Vásquez-Espinal,
  • Rodrigo Báez-Grez,
  • Luis Lain,
  • Alicia Torre,
  • Víctor García,
  • William Tiznado

DOI
https://doi.org/10.3390/chemistry3040080
Journal volume & issue
Vol. 3, no. 4
pp. 1101 – 1112

Abstract

Read online

The minimum energy structures of the Si3C5 and Si4C8 clusters are planar and contain planar tetracoordinate carbons (ptCs). These species have been classified, qualitatively, as global (π) and local (σ) aromatics according to the adaptive natural density partitioning (AdNDP) method, which is an orbital localization method. This work evaluates these species’ aromaticity, focusing on confirming and quantifying their global and local aromatic character. For this purpose, we use an orbital localization method based on the partitioning of the molecular space according to the topology of the electronic localization function (LOC-ELF). In addition, the magnetically induced current density is analyzed. The LOC-ELF-based analysis coincides with the AdNDP study (double aromaticity, global, and local). Moreover, the current density analysis detects global and local ring currents. The strength of the global and local current circuit is significant, involving 4n + 2 π- and σ-electrons, respectively. The latter implicates the Si-ptC-Si fragment, which would be related to the 3c-2e σ-bond detected by the orbital localization methods in this fragment.

Keywords