Cell Reports (Sep 2018)
International Multisite Study of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Proarrhythmic Potential Assessment
Abstract
Summary: To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ∼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm. : Blinova et al. tested human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for improving torsades de pointes arrhythmia risk prediction of drugs in the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative. This validation study confirms their utility based on electrophysiologic responses to 28 blinded drugs, with minimal influence from cell lines, test sites, and electrophysiological platforms. Keywords: comprehensive in vitro proarrhythmia assay, CiPA, human-induced pluripotent stem cell-derived cardiomycotes, hiPSC-CM, drug-induced ventricular arrhythmia Torsade de Pointes, microelectrode array, voltage-sensitive dyes