Energies (Nov 2024)

Short-Term Wind Power Forecasting Based on OMNIC and Adaptive Fractional Order Generalized Pareto Motion Model

  • Fan Cai,
  • Dongdong Chen,
  • Yuesong Jiang,
  • Tongbo Zhu

DOI
https://doi.org/10.3390/en17235848
Journal volume & issue
Vol. 17, no. 23
p. 5848

Abstract

Read online

With the rapid development of renewable energy, accurately forecasting wind power is crucial for the stable operation of power systems and effective energy management. This paper proposes a short-term wind power forecasting method based on the Orthogonalized Maximal Information Coefficient (OMNIC) combined with an Adaptive fractional Generalized Pareto motion (fGPm) model. The method quantifies the influence of meteorological factors on wind power prediction and identifies the optimal set and number of influencing factors. The model accounts for long-range dependence (LRD) in time series data and constructs an uncertainty model using the properties and parameters of the fractional generalized Pareto distribution (GPD), significantly improving prediction accuracy under nonlinear conditions. The proposed approach was validated using a real dataset from a wind farm in northwest China and compared with other models such as Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU). Results show that the adaptive fGPm model reduces RMSE by 0.448 MW and 0.466 MW, MAPE by 6.936% and 9.702%, and achieves an average R2 of 0.9826 compared to CNN-GRU and CNN-LSTM. The improvement is due to the dynamic adjustment to data trends and effective use of LRD features. This method provides practical value in improving wind power prediction accuracy and addressing grid integration and regulation challenges.

Keywords