Applied Sciences (Feb 2023)

Dynamic Characteristics of Urban Rail Train in Multivehicle Marshaling under Traction Conditions

  • Yichao Zhang,
  • Jianwei Yang,
  • Jinhai Wang,
  • Yue Zhao

DOI
https://doi.org/10.3390/app13053022
Journal volume & issue
Vol. 13, no. 5
p. 3022

Abstract

Read online

In recent years, urban rail transportation has rapidly developed in China and become one of the most important modes of travel. Most existing studies on the dynamic characteristics of urban rail trains have been based on single-section trains, and there have been fewer studies on marshaling urban rail trains that incorporate traction transmission systems. The dynamic performance of each carriage directly affects the operational reliability and even the running safety of urban rail trains. For this reason, in this paper, a marshaling urban rail train model with a traction transmission system was established and its accuracy was validated by field tests. This dynamics model enables the consideration of the coupling interactions between the gear transmission motion, the vertical, the lateral and the longitudinal motions of the vehicle. First, the model accuracy was validated by field tests. Then, the relationship between the motor torque and the running time of the urban rail train under traction conditions was calculated. Finally, the dynamic performance of each car of the marshaling train was studied. The research results show that there is a clear difference between the dynamics of the motor car and the trailer, and that the motor car is significantly inferior to the trailer. Among the four motor cars, the dynamic performances of the first and last moving cars were worse than those of the other motor cars. Among the two trailers, the trailer at the back was worse than the trailer at the front. The traction transmission system has a greater impact on the vertical and lateral vibration of the train bogie frame and wheelset, but the impact on the vibration of the car body is negligible. This paper provides theoretical support for the research one train dynamic performance optimization and operation safety.

Keywords