Environment International (Aug 2024)

Associations of ambient air pollution exposure and lifestyle factors with incident dementia in the elderly: A prospective study in the UK Biobank

  • Yichi Zhang,
  • Ye Fu,
  • Xin Guan,
  • Chenming Wang,
  • Ming Fu,
  • Yang Xiao,
  • Shiru Hong,
  • Yuhan Zhou,
  • Chenliang Liu,
  • Guorong Zhong,
  • Tianhao Wu,
  • Yingqian You,
  • Hui Zhao,
  • Shengli Chen,
  • Yuxi Wang,
  • Huan Guo

Journal volume & issue
Vol. 190
p. 108870

Abstract

Read online

Objective: Dementia is an important disease burden among the elderly, and its occurrence may be profoundly affected by environmental factors. Evidence of the relationship between air pollution and dementia is emerging, but the extent to which this can be offset by lifestyle factors remains ambiguous. Methods: This study comprised 155,828 elder adults aged 60 years and above in the UK Biobank who were dementia-free at baseline. Cox proportional hazard models were conducted to examine the associations of annual average levels of air pollutants in 2010, including nitrogen dioxide (NO2), nitrogen oxides (NOX), particulate matter (PM2.5, PM10, and PMcoarse) and lifestyle factors recorded at baseline [physical activity (PA), sleep patterns, or smoking status] with incident risk of dementia, and their interactions on both multiplicative and additive scales. Results: During a 12-year period of follow-up, 4,389 incidents of all-cause dementia were identified. For each standard deviation increase in ambient NO2, NOX or PM2.5, all-cause dementia risk increases by 1.07-fold [hazard ratio (HR) and 95 % confidence interval (CI) = 1.07 (1.04, 1.10)], 1.05-fold (95 % CI: 1.02, 1.08) and 1.07-fold (95 % CI: 1.04, 1.10), whereas low levels of PA, poor sleep patterns, and smoking are associated with an elevated risk of dementia [HR (95 % CI) = 1.17 (1.09, 1.26), 1.13 (1.00, 1.27), and 1.14 (1.07, 1.21), respectively]. Furthermore, these air pollutants show joint effects with low PA, poor sleep patterns, and smoking on the onset of dementia. The moderate to high levels of PA could significantly or marginally significantly modify the associations between NO2, NOX or PM2.5 (P-int = 0.067, 0.036, and 0.067, respectively) and Alzheimer’s disease (AD), but no significant modification effects are found for sleep patterns or smoking status. Conclusion: The increased exposures of NO2, NOX, or PM2.5 are associated with elevated risk of dementia among elderly UK Biobank population. These air pollutants take joint effects with low PA, poor sleep patterns, and smoking on the development of dementia. In addition, moderate to high levels of PA could attenuate the incident risk of AD caused by air pollution. Further prospective researches among other cohort populations are warranted to validate these findings.

Keywords