Nature Communications (Nov 2022)

Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology

  • James M. Dolezal,
  • Andrew Srisuwananukorn,
  • Dmitry Karpeyev,
  • Siddhi Ramesh,
  • Sara Kochanny,
  • Brittany Cody,
  • Aaron S. Mansfield,
  • Sagar Rakshit,
  • Radhika Bansal,
  • Melanie C. Bois,
  • Aaron O. Bungum,
  • Jefree J. Schulte,
  • Everett E. Vokes,
  • Marina Chiara Garassino,
  • Aliya N. Husain,
  • Alexander T. Pearson

DOI
https://doi.org/10.1038/s41467-022-34025-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Safe clinical deployment of deep learning models for digital pathology requires reliable estimates of predictive uncertainty. Here the authors describe an algorithm for quantifying whole-slide image uncertainty, demonstrating their approach with models trained to distinguish lung cancer subtypes.