PLoS Genetics (Nov 2013)

Fission yeast shelterin regulates DNA polymerases and Rad3(ATR) kinase to limit telomere extension.

  • Ya-Ting Chang,
  • Bettina A Moser,
  • Toru M Nakamura

DOI
https://doi.org/10.1371/journal.pgen.1003936
Journal volume & issue
Vol. 9, no. 11
p. e1003936

Abstract

Read online

Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3(ATR)/Tel1(ATM)-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1(TERT)), DNA polymerases, Replication Protein A (RPA) complex, Rad3(ATR)-Rad26(ATRIP) checkpoint kinase complex, Tel1(ATM) kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3(ATR) association, Ccq1 Thr93 phosphorylation and telomerase recruitment.