Sensors (Oct 2018)

Active Thermal Sensing for Bonding Structure Damage Detection of Hidden Frame Glass Curtain Wall

  • Xiaobin Hong,
  • Jinfan Lin,
  • Yuan Liu,
  • Weiying Xu

DOI
https://doi.org/10.3390/s18113594
Journal volume & issue
Vol. 18, no. 11
p. 3594

Abstract

Read online

Adhesive bonded structure damage of hidden frame glass curtain wall will cause falling glass, which threatens the security of people and property. Therefore, the damage detection of the adhesive bonded structure of glass curtain wall has great significance. In this paper, active thermal sensing technology for bonding structure damage detection was introduced. Firstly, the thermal wave propagation of bonded structure was analyzed. Second, the simulated annealing algorithm and TracePro simulation were utilized to design the heat source. Thirdly, the platform of active thermal sensing was built, and experiments were conducted. Finally, image fusion enhancement of Laplacian pyramid was utilized to the enhancement process of thermal images. The simulation results showed that the irradiance of the cross-optimization was more uniform, and the uniformity was 17.50% higher than the original design value. The experiments results showed that defects of different sizes and depths can be distinguished. The gray differences of the damages on the depth of 0 mm and 4 mm were 0.025 and 0.045, respectively. The thermal wave testing can detect damage intuitively and rapidly, which is significant for the future research of unmanned detection of bonding structure damage of hidden frame glass curtain wall.

Keywords