Advanced Science (Oct 2024)

Using Adaptive Imaging Parameters to Improve PEGylated Ultrasmall Iron Oxide Nanoparticles‐Enhanced Magnetic Resonance Angiography

  • Cang Li,
  • Shanshan Shan,
  • Lei Chen,
  • Mohammad Javad Afshari,
  • Hongzhao Wang,
  • Kuan Lu,
  • Dandan Kou,
  • Ning Wang,
  • Yang Gao,
  • Chunyi Liu,
  • Jianfeng Zeng,
  • Feng Liu,
  • Mingyuan Gao

DOI
https://doi.org/10.1002/advs.202405719
Journal volume & issue
Vol. 11, no. 39
pp. n/a – n/a

Abstract

Read online

Abstract The PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs) exhibit longer blood residence time and better biodegradability than conventional gadolinium‐based contrast agents (GBCAs), enabling prolonged acquisitions in contrast‐enhanced magnetic resonance angiography (CE‐MRA) applications. The image quality of CE‐MRA is dependent on the contrast agent concentration and the parameters of the pulse sequences. Here, a closed‐form mathematical model is demonstrated and validated to automatically optimize the concentration, echo time (TE), repetition time (TR) and flip angle (FA). The pharmacokinetic studies are performed to estimate the dynamic intravascular concentrations within 12 h postinjection, and the adaptive concentration‐dependent sequence parameters are determined to achieve optimal signal enhancement during a prolonged measurement window. The presented model is tested on phantom and in vivo rat images acquired from a 3T scanner. Imaging results demonstrate excellent agreement between experimental measurements and theoretical predictions, and the adaptive sequence parameters obtain better signal enhancement than the fixed ones. The low‐dose PUSIONPs (0.03 mmol kg−1 and 0.05 mmol kg−1) give a comparable signal intensity to the high‐dose one (0.10 mmol kg−1) within 2 h postinjection. The presented mathematical model provides guidance for the optimization of the concentration and sequence parameters in PUSIONPs‐enhanced MRA, and has great potential for further clinical translation.

Keywords