Scientific Reports (Mar 2021)

Detection of copy number variation associated with ventriculomegaly in fetuses using single nucleotide polymorphism arrays

  • Huili Xue,
  • Aili Yu,
  • Na Lin,
  • Xuemei Chen,
  • Min Lin,
  • Yan Wang,
  • Hailong Huang,
  • Liangpu Xu

DOI
https://doi.org/10.1038/s41598-021-83147-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Etiopathogenesis of fetal ventriculomegaly is poorly understood. Associations between fetal isolated ventriculomegaly and copy number variations (CNVs) have been previously described. We investigated the correlations between fetal ventriculomegaly—with or without other ultrasound anomalies—and chromosome abnormalities. 222 fetuses were divided into four groups: (I) 103 (46.4%) cases with isolated ventriculomegaly, (II) 41 (18.5%) cases accompanied by soft markers, (III) 33 (14.9%) cases complicated with central nervous system (CNS) anomalies, and (IV) 45 (20.3%) cases with accompanying anomalies. Karyotyping and single nucleotide polymorphism (SNP) array were used in parallel. Karyotype abnormalities were identified in 15/222 (6.8%) cases. Karyotype abnormalities in group I, II, III, and IV were 4/103 (3.9%), 2/41 (4.9%), 4/33 (12.1%), and 5/45 (11.1%), respectively. Concerning the SNP array analysis results, 31/222 (14.0%) were CNVs, CNVs in groups I, II, III, and IV were 11/103 (10.7%), 6/41 (14.6%), 9/33 (27.3%), and 5/45 fetuses (11.1%), respectively. Detections of clinical significant CNVs were higher in non-isolated ventriculomegaly than in isolated ventriculomegaly (16.81% vs 10.7%, P = 0.19). SNP arrays can effectively identify CNVs in fetuses with ventriculomegaly and increase the abnormal chromosomal detection rate by approximately 7.2%, especially ventriculomegaly accompanied by CNS anomalies.