Systems and Soft Computing (Dec 2024)
Fuzzy hybrid approach for advanced teaching learning technique with particle swarm optimization in the diagnostic of dengue disease
Abstract
Dengue fever is a serious public health issue worldwide, particularly in tropical and subtropical areas. Early detection and accurate diagnosis are essential for effective management and control of the disease. In this study, we present a fuzzy hybrid approach (F-TLBO-APSO) for the detection and diagnosis of dengue disease using an advanced teaching-learning technique with adaptive particle swarm optimization. The proposed method combines the strengths of fuzzy logic, teaching learning-based optimization (TLBO), and adaptive particle swarm optimization (APSO) to improve the accuracy and efficiency of dengue detection based on symptoms. A key challenge addressed is the management of uncertain information existing in the problem. To validate the proposed technique, we applied it to a case study, demonstrating its robustness. The results indicate the versatility of the F-TLBO-APSO algorithm and highlight its value in detecting dengue based on symptoms. Our numerical computations reveal the advantages of the F-TLBO-APSO algorithm compared to TLBO and APSO.