Applications in Energy and Combustion Science (Dec 2023)

Effect of a single nanosecond pulsed discharge on a flat methane–air flame

  • Yupan Bao,
  • Chengdong Kong,
  • Jonas Ravelid,
  • Jinguo Sun,
  • Sebastian Nilsson,
  • Elias Kristensson,
  • Andreas Ehn

Journal volume & issue
Vol. 16
p. 100198

Abstract

Read online

Successful implementation of plasma-assisted combustion in applied thermal processes heavily relies on how the plasma can be formed as it interacts with the reactive flow and what the effects are of such a plasma on the combustion process. The current study is an experimental investigation of a plasma-assisted lifted flat methane–air flame by a nanosecond pulsed discharge at atmospheric pressure. The nanosecond pulsed discharge, with a pulse duration of 4 ns and an amplitude of 30 kV to 50 kV, is used to stimulate the flame with a repetition rate of 1 Hz. The flame/plasma interactions are investigated with electrical and optical/laser diagnostics to study plasma-formation and its effect on the temperatures and formaldehyde formation. The flame speed seems to be accelerated for tens of milliseconds after the plasma stimulation, without noticeable gas temperature increase at the flame front and in the post-flame region. Formaldehyde is formed in the unburnt region while there is a slight increase in formaldehyde signal in the preheat zone. These results show that a volumetric effect of plasma-assisted combustion can be achieved with a short nanosecond plasma from a single excitation.

Keywords