Nuclear Engineering and Technology (Dec 2024)

Improvement of macroscopic turbulence model for subchannel analysis in the rod bundle array

  • Seok Kim,
  • Jee Min Yoo,
  • Sang-Ki Moon

Journal volume & issue
Vol. 56, no. 12
pp. 5118 – 5135

Abstract

Read online

The PRIUS program was established to generate an experimental database for the 6 × 4 and 12 × 6 rod bundle geometry. The database will be used to address the subchannel and CFD code analysis required for modeling and validation. This is necessary because Small Break Loss of Coolant Accident (SBLOCA) and Intermediate Break Loss of Coolant Accident (IBLOCA) present three-dimensional phenomena in the core due to the radial power profile, crossflow, and diffusion-dispersion. Therefore, specific experimental programs are required, especially during core reflooding, to investigate the large-scale three-dimensional effects. However, validating each sensitive model of the code separately in the presence of 3D effects is not possible due to the inability to implement instrumentation at high pressure and temperature steam-water flow conditions. The PRIUS test program uses a single-phase flow test to simulate a non-homogeneous velocity distribution and provide information on crossflow with radial mixing effects between subchannels. The CUPID code, which uses a macroscopic turbulence model, has been validated using the PRIUS-II experimental database. Existing macroscopic turbulence models were also validated for their prediction capabilities with different inlet flow conditions. However, the validation revealed significant errors in the shear region between subchannels. An improved macroscopic turbulence model showed promising results in predicting turbulence kinetic energy in porous media analysis.

Keywords