Journal of Manufacturing and Materials Processing (May 2024)

Experimental Evidence on Incremental Formed Polymer Sheets Using a Stair Toolpath Strategy

  • Antonio Formisano,
  • Luca Boccarusso,
  • Dario De Fazio,
  • Massimo Durante

DOI
https://doi.org/10.3390/jmmp8030105
Journal volume & issue
Vol. 8, no. 3
p. 105

Abstract

Read online

Incremental sheet forming represents a relatively recent technology, similar to the layered manufacturing principle of the rapid prototype approach; it is very suitable for small series production and guarantees cost-effectiveness because it does not require dedicated equipment. Research has initially shown that this process is effective in metal materials capable of withstanding plastic deformation but, in recent years, the interest in this technique has been increasing for the manufacture of complex polymer sheet components as an alternative to the conventional technologies, based on heating–shaping–cooling manufacturing routes. Conversely, incrementally formed polymer sheets can suffer from some peculiar defects, like, for example, twisting. To reduce the risk of this phenomenon, the occurrence of failures and poor surface quality, a viable way is to choose toolpath strategies that make the tool/sheet contact conditions less severe; this represents one of the main goals of the present research. Polycarbonate sheets were worked using incremental forming; in detail, cone frusta with a fixed-wall angle were manufactured with different toolpaths based on a reference and a stair strategy, in lubricated and dry conditions. The forming forces, the forming time, the twist angle, and the mean roughness were monitored. The analysis of the results highlighted that a stair toolpath involving an alternation of diagonal up and vertical down steps represents a useful strategy to mitigate the occurrence of the twisting phenomenon in incremental formed thermoplastic sheets and a viable way of improving the process towards a green manufacturing process.

Keywords