Geophysical Research Letters (May 2024)

4D Electrical Resistivity Imaging of Stress Perturbations Induced During High‐Pressure Shear Stimulation Tests

  • T. C. Johnson,
  • J. Burghardt,
  • C. Strickland,
  • D. Sirota,
  • V. Vermeul,
  • H. Knox,
  • P. Schwering,
  • D. Blankenship,
  • T. Kneafsey,
  • the EGS Collab Team

DOI
https://doi.org/10.1029/2024GL108423
Journal volume & issue
Vol. 51, no. 10
pp. n/a – n/a

Abstract

Read online

Abstract Fluid flow through fractured media is typically governed by the distribution of fracture apertures, which are in turn governed by stress. Consequently, understanding subsurface stress is critical for understanding and predicting subsurface fluid flow. Although laboratory‐scale studies have established a sensitive relationship between effective stress and bulk electrical conductivity in crystalline rock, that relationship has not been extensively leveraged to monitor stress evolution at the field scale using electrical or electromagnetic geophysical monitoring approaches. In this paper we demonstrate the use time‐lapse 3‐dimensional (4D) electrical resistivity tomography to image perturbations in the stress field generated by pressurized borehole packers deployed during shear‐stimulation attempts in a 1.25 km deep metamorphic crystalline rock formation.

Keywords