Applied Sciences (May 2024)

Fragmentation and ISRS-Aware Survivable Routing, Band, Modulation, and Spectrum Allocation Algorithm in Multi-Band Elastic Optical Networks

  • Yunxuan Liu,
  • Nan Feng,
  • Lingfei Shen,
  • Jingjing Lv,
  • Dan Yan,
  • Jijun Zhao

DOI
https://doi.org/10.3390/app14114755
Journal volume & issue
Vol. 14, no. 11
p. 4755

Abstract

Read online

The C+L band elastic optical networks (C+L-EONs) increase the network capacity significantly. However, the introduction of an L band enhances the inter-channel stimulated Raman scattering effect (ISRS), consequently deteriorating the quality of transmission (QoT) of the signal. Furthermore, spectrum allocation leads to spectrum fragmentation inevitably, which escalates the bandwidth blocking rate. In addition, in C+L-EONs, a single fiber carries more services, and once one of the links fails, a huge number of requests will be interrupted, resulting in huge economic losses. Therefore, this paper proposes a survivability routing, band, modulation, and spectrum allocation (RBMSA) algorithm that effectively guarantees service survivability and reduces the impact of ISRS and spectrum fragmentation. The algorithm employs shared backup path protection and a band partitioning method, whereby the spectrum resource of the primary path is assigned in the L band and the backup path is assigned in the C band in order to minimize the impact of ISRS on the QoT of the request while ensuring the survivability of the network. Furthermore, a fragmentation metric accounting for both the free and shared spectrum resource is proposed to mitigate both free and shared spectrum fragmentation. The simulation results reveal that the proposed RBMSA algorithm reduces the bandwidth blocking probability (BBP) and the fragmentation rate (FR) by 47.7% and 21.3%, respectively, and improves the optical signal-to-noise ratio (OSNR) by 4.17 dB in NSFNET. In COST239, the BBP, FR, and OSNR are 22.1%, 21.5%, and 4.71 dB, respectively.

Keywords