Materials (Jan 2021)

Investigation of Electromagnetic Pulse Compaction on Conducting Graphene/PEKK Composite Powder

  • Quanbin Wang,
  • Deli Jia,
  • Xiaohan Pei,
  • Xuelian Wu,
  • Fan Xu,
  • Huixiong Wang,
  • Minghao Cao,
  • Haidong Chen

DOI
https://doi.org/10.3390/ma14030636
Journal volume & issue
Vol. 14, no. 3
p. 636

Abstract

Read online

Polymer-composite materials have the characteristics of light weight, high load, corrosion resistance, heat resistance, and high oil resistance. In particular, graphene composite has better electrical conductivity and mechanical performance. However, the raw materials of graphene composite are processed into semi-finished products, directly affecting their performance and service life. The electromagnetic pulse compaction was initially studied to get the product Graphene/PEKK composite powder. Simultaneously, spark plasma sintering was used to get the bars to determine the electrical conductivity of Graphene/PEKK composite. On the basis of this result, conducting Graphene/PEKK composite powder can be processed by electromagnetic pulse compaction. Finite element numerical analysis was used to obtain process parameters during the electromagnetic pulse compaction. The results show that discharge voltage and discharge capacitance influence on the magnetic force, which is a main moulding factor affecting stress, strain and density distribution on the specimen during electromagnetic pulse compaction in a few microseconds.

Keywords