Poultry Science (Sep 2024)
Effects of thyroid hormone on monochromatic light combinations mediate skeletal muscle fiber pattern in broilers
Abstract
ABSTRACT: It has been shown that monochromatic green light and blue light promote skeletal muscle development in early (P0-P26) and later growth stages (P27-P42), respectively. This study further investigated the effects of monochromatic light combinations on myogenesis and myofiber types transformation in broilers. Here, a total of 252 chicks were exposed to monochromatic light [red (R), green (G), blue (B), or white light (W)], and monochromatic light combination [green and blue light combination (GB), blue and green light combination (BG), red and blue combination (RB)] until P42. Compared with other groups, GB significantly increased body weight, and muscle organ index, both proportions of larger-size myofibers and oxidative myofibers in the pectoralis major (PM) and gastrocnemius muscle (GAS). Meanwhile, GB up-regulated the abundance of oxidative genes MYH7B and MYH1B, transcription factors PAX7 and Myf5, antioxidant proteins Nrf2, HO-1, and GPX4, and the activities of antioxidant enzymes CAT, GPx, and T-AOC, but down-regulated the abundance of glycolytic related genes MYH 1A, MyoD, MyoG, Mstn, Keap1, TNFa, and MDA levels. Consistent with the change of myofiber pattern, GB significantly reduced serum thyroid hormone (TH) levels, up-regulated skeletal muscle deiodinase DIO3 expression and down-regulated deiodinase DIO2 expression, which may directly lead to the reduction of intramuscular TH levels to affect myofiber types transformation. In contrast, the proportion of fast glycolytic muscle fibers increased in the RR with increasing TH levels. After thyroidectomy, the above parameters were inversed and resulted in no significant difference of each color light treatment group. These data suggested that GB significantly increased the proportion of oxidative muscle fibers and antioxidant capacity in skeletal muscle of broilers, which was regulated by TH-DIO2/DIO3 signaling pathway.