Machine Learning and Knowledge Extraction (Jun 2024)

A Review of Orebody Knowledge Enhancement Using Machine Learning on Open-Pit Mine Measure-While-Drilling Data

  • Daniel M. Goldstein,
  • Chris Aldrich,
  • Louisa O’Connor

DOI
https://doi.org/10.3390/make6020063
Journal volume & issue
Vol. 6, no. 2
pp. 1343 – 1360

Abstract

Read online

Measure while drilling (MWD) refers to the acquisition of real-time data associated with the drilling process, including information related to the geological characteristics encountered in hard-rock mining. The availability of large quantities of low-cost MWD data from blast holes compared to expensive and sparsely collected orebody knowledge (OBK) data from exploration drill holes make the former more desirable for characterizing pre-excavation subsurface conditions. Machine learning (ML) plays a critical role in the real-time or near-real-time analysis of MWD data to enable timely enhancement of OBK for operational purposes. Applications can be categorized into three areas, focused on the mechanical properties of the rock mass, the lithology of the rock, as well as, related to that, the estimation of the geochemical species in the rock mass. From a review of the open literature, the following can be concluded: (i) The most important MWD metrics are the rate of penetration (rop), torque (tor), weight on bit (wob), bit air pressure (bap), and drill rotation speed (rpm). (ii) Multilayer perceptron analysis has mostly been used, followed by Gaussian processes and other methods, mainly to identify rock types. (iii) Recent advances in deep learning methods designed to deal with unstructured data, such as borehole images and vibrational signals, have not yet been fully exploited, although this is an emerging trend. (iv) Significant recent developments in explainable artificial intelligence could also be used to better advantage in understanding the association between MWD metrics and the mechanical and geochemical structure and properties of drilled rock.

Keywords