Selected Scientific Papers: Journal of Civil Engineering (Dec 2021)
Use of Biopolymers in the Stabilization of Clay Soils
Abstract
The treatment and stabilization of soils make it possible to recycle materials on construction sites in preparation for the installation of a final covering or the construction of a road network. In road geotechnics, various materials such as lime, cement, and pozzolans were used as additions to stabilize clay soils. In recent years, bio-polymers and bacteria are of increasing interest to researchers in the field of stabilization and improvement of the physico-mechanical and chemical characteristics of clay soils. Currently, in place of traditional clay treatment techniques and to minimize environmental problems, natural fibrous waste is being used increasingly and spectacularly. Several studies on biotechnological engineering applications already exist, such as the use of vegetation, algae, bacteria, enzymes, and biopolymers. The northern Algerian region where the urban tissue does not stop expanding contains significant potential in terms of wheat straw, which represents a very present agricultural waste. So, there is a local interest in the sustainable development of several regions known to produce wheat. This study is interested in investigating the effect of wheat straw on the stabilization of swelling clay soil. In order to improve the physico-mechanical characteristics of clay soils, a series of laboratory tests (Atterberg limit, Proctor test, direct shear test, Oedometer test, and unconfident compressive strength test) were carried out on reconstituted clay soil with defined initial properties through numerous analyses (e.g., XRD and XRF) and then treated with different vegetable fiber content. The results indicate that there is an improvement in the compressibility characteristics of the treated soil, a remarkable decrease in the swelling index and the compressibility index respectively with increasing percentages of wheat straw.
Keywords