Materials (Feb 2021)

Linking the Electrical Conductivity and Non-Stoichiometry of Thin Film Ce<sub>1−x</sub>Zr<sub>x</sub>O<sub>2−δ</sub> by a Resonant Nanobalance Approach

  • Iurii Kogut,
  • Alexander Wollbrink,
  • Carsten Steiner,
  • Hendrik Wulfmeier,
  • Fatima-Ezzahrae El Azzouzi,
  • Ralf Moos,
  • Holger Fritze

DOI
https://doi.org/10.3390/ma14040748
Journal volume & issue
Vol. 14, no. 4
p. 748

Abstract

Read online

Bulk ceria-zirconia solid solutions (Ce1−xZrxO2−δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10−24–0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2−δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1−xZrxO2−δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2−δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10−14 bar. The defect interactions in Ce1−xZrxO2−δ are analyzed in the framework of defect models for ceria and zirconia.

Keywords