Scientific Reports (Mar 2024)

Optimizing energy efficiency in induction skull melting process: investigating the crucial impact of melting system structure

  • Chaojun Zhang,
  • Lunyong Zhang,
  • Fuyang Cao,
  • Zhishuai Jin,
  • Guanyu Cao,
  • Hongxian Shen,
  • Yongjiang Huang,
  • Jianfei Sun

DOI
https://doi.org/10.1038/s41598-024-56966-7
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Induction skull melting (ISM) technology could melt metals with avoiding contamination from crucible. A long-standing problem of ISM is that the low charge energy utilization and inhomogeneous fields have obstructed its application in many critical metal materials and manufacturing processes. The present work investigated the problem through the structure optimization strategy and established a numerical electromagnetic-field model to evaluate components’ eddy current loss. Based on the model, the effect of crucible and inductor structure on charge energy utilization, etc. was studied. Furtherly, the charge energy utilization was increased from 27.1 to 45.89% by adjusting the system structure. Moreover, structure modifications are proposed for enhancing electromagnetic intensity and uniformity, charge soft contact and uniform heating. The work constructed a basis for framing new solutions to the problem through ISM device structure optimization.

Keywords