Minerals (Jun 2024)

Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt

  • Maude Bilodeau,
  • Don R. Baker

DOI
https://doi.org/10.3390/min14060611
Journal volume & issue
Vol. 14, no. 6
p. 611

Abstract

Read online

A modified model based on classical nucleation theory was applied to a natural hydrous peraluminous pegmatite composition and tested against crystallization experiments in order to further investigate the quantification of nucleation delay in felsic melts. Crystallization experiments were performed in a piston-cylinder apparatus at 630 MPa and temperatures between 650 and 1000 °C for durations ranging from 0.3 to 211 h. Experimental run products were investigated by scanning electron microscopy paired with energy dispersive spectroscopy analyses of both crystalline and quenched liquid phases, the results of which were compared to an established theoretical nucleation delay model from the literature. The experiments showed good agreement (within a factor of 5) with the model for quartz, while it showed moderate agreement (within a factor of 10) with the model for sodic feldspar. Other crystals also nucleated, demonstrating abundant features of disequilibrium. Our research further demonstrates the potential of the model to predict nucleation delay, showing promising results for the quantification of the nucleation delay of quartz and feldspar in natural felsic melts, thus adding to previously published studies on hydrous, metaluminous, felsic melts and dry basaltic melts.

Keywords