BMC Medical Research Methodology (May 2024)

Weibull parametric model for survival analysis in women with endometrial cancer using clinical and T2-weighted MRI radiomic features

  • Xingfeng Li,
  • Diana Marcus,
  • James Russell,
  • Eric O. Aboagye,
  • Laura Burney Ellis,
  • Alexander Sheeka,
  • Won-Ho Edward Park,
  • Nishat Bharwani,
  • Sadaf Ghaem-Maghami,
  • Andrea G. Rockall

DOI
https://doi.org/10.1186/s12874-024-02234-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Semiparametric survival analysis such as the Cox proportional hazards (CPH) regression model is commonly employed in endometrial cancer (EC) study. Although this method does not need to know the baseline hazard function, it cannot estimate event time ratio (ETR) which measures relative increase or decrease in survival time. To estimate ETR, the Weibull parametric model needs to be applied. The objective of this study is to develop and evaluate the Weibull parametric model for EC patients’ survival analysis. Methods Training (n = 411) and testing (n = 80) datasets from EC patients were retrospectively collected to investigate this problem. To determine the optimal CPH model from the training dataset, a bi-level model selection with minimax concave penalty was applied to select clinical and radiomic features which were obtained from T2-weighted MRI images. After the CPH model was built, model diagnostic was carried out to evaluate the proportional hazard assumption with Schoenfeld test. Survival data were fitted into a Weibull model and hazard ratio (HR) and ETR were calculated from the model. Brier score and time-dependent area under the receiver operating characteristic curve (AUC) were compared between CPH and Weibull models. Goodness of the fit was measured with Kolmogorov-Smirnov (KS) statistic. Results Although the proportional hazard assumption holds for fitting EC survival data, the linearity of the model assumption is suspicious as there are trends in the age and cancer grade predictors. The result also showed that there was a significant relation between the EC survival data and the Weibull distribution. Finally, it showed that Weibull model has a larger AUC value than CPH model in general, and it also has smaller Brier score value for EC survival prediction using both training and testing datasets, suggesting that it is more accurate to use the Weibull model for EC survival analysis. Conclusions The Weibull parametric model for EC survival analysis allows simultaneous characterization of the treatment effect in terms of the hazard ratio and the event time ratio (ETR), which is likely to be better understood. This method can be extended to study progression free survival and disease specific survival. Trial registration ClinicalTrials.gov NCT03543215, https://clinicaltrials.gov/ , date of registration: 30th June 2017.

Keywords