Nature Communications (Jul 2024)

Coupling sensor to enzyme in the voltage sensing phosphatase

  • Yawei Yu,
  • Lin Zhang,
  • Baobin Li,
  • Zhu Fu,
  • Stephen G. Brohawn,
  • Ehud Y. Isacoff

DOI
https://doi.org/10.1038/s41467-024-50319-8
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Voltage-sensing phosphatases (VSPs) dephosphorylate phosphoinositide (PIP) signaling lipids in response to membrane depolarization. VSPs possess an S4-containing voltage sensor domain (VSD), resembling that of voltage-gated cation channels, and a lipid phosphatase domain (PD). The mechanism by which voltage turns on enzyme activity is unclear. Structural analysis and modeling suggest several sites of VSD-PD interaction that could couple voltage sensing to catalysis. Voltage clamp fluorometry reveals voltage-driven rearrangements in three sites implicated earlier in enzyme activation—the VSD-PD linker, gating loop and R loop—as well as the N-terminal domain, which has not yet been explored. N-terminus mutations perturb both rearrangements in the other segments and enzyme activity. Our results provide a model for a dynamic assembly by which S4 controls the catalytic site.