Molecules (May 2023)

Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents

  • Fatouma Mohamed Abdoul-Latif,
  • Ayoub Ainane,
  • Touria Hachi,
  • Rania Abbi,
  • Meryem Achira,
  • Abdelmjid Abourriche,
  • Mathieu Brulé,
  • Tarik Ainane

DOI
https://doi.org/10.3390/molecules28114310
Journal volume & issue
Vol. 28, no. 11
p. 4310

Abstract

Read online

This work investigates olive pomace from olive mill factories as an adsorbent for the removal of total phenols from olive mill effluent (OME). This pathway of valorization of olive pomace reduces the environmental impact of OME while providing a sustainable and cost-effective wastewater treatment approach for the olive oil industry. Olive pomace was pretreated with water washing, drying (60 °C) and sieving (−1 for OPR and 66.67 mg·g−1 for OPB, respectively. Thermodynamic simulations indicated spontaneous and exothermic reaction. The rates of total phenol removal were within the range of 10–90% following 24 h batch adsorption in OME diluted at 100 mg/L total phenols, with the highest removal rates observed at pH = 10. Furthermore, solvent regeneration with 70% ethanol solution yielded partial regeneration of OPR at 14% and of OPB at 45% following the adsorption, implying a significant rate of recovery of phenols in the solvent. The results of this study suggest that adsorbents derived from olive pomace may be used as economical materials for the treatment and potential capture of total phenols from OME, also suggesting potential further applications for pollutants in industrial wastewaters, which can have significant implications in the field of environmental technologies.

Keywords