Remote Sensing (Apr 2016)

AVHRR GAC SST Reanalysis Version 1 (RAN1)

  • Alexander Ignatov,
  • Xinjia Zhou,
  • Boris Petrenko,
  • Xingming Liang,
  • Yury Kihai,
  • Prasanjit Dash,
  • John Stroup,
  • John Sapper,
  • Paul DiGiacomo

DOI
https://doi.org/10.3390/rs8040315
Journal volume & issue
Vol. 8, no. 4
p. 315

Abstract

Read online

In response to its users’ needs, the National Oceanic and Atmospheric Administration (NOAA) initiated reanalysis (RAN) of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC; 4 km) sea surface temperature (SST) data employing its Advanced Clear Sky Processor for Oceans (ACSPO) retrieval system. Initially, AVHRR/3 data from five NOAA and two Metop satellites from 2002 to 2015 have been reprocessed. The derived SSTs have been matched up with two reference SSTs—the quality controlled in situ SSTs from the NOAA in situ Quality Monitor (iQuam) and the Canadian Meteorological Centre (CMC) L4 SST analysis—and analyzed in the NOAA SST Quality Monitor (SQUAM) online system. The corresponding clear-sky ocean brightness temperatures (BT) in AVHRR bands 3b, 4 and 5 (centered at 3.7, 11, and 12 µm, respectively) have been compared with the Community Radiative Transfer Model simulations in another NOAA online system, Monitoring of Infrared Clear-sky Radiances over Ocean for SST (MICROS). For some AVHRRs, the time series of “AVHRR minus reference” SSTs and “observed minus model” BTs are unstable and inconsistent, with artifacts in the SSTs and BTs strongly correlated. In the official “Reanalysis version 1” (RAN1), data from only five platforms—two midmorning (NOAA-17 and Metop-A) and three afternoon (NOAA-16, -18 and -19)—were included during the most stable periods of their operations. The stability of the SST time series was further improved using variable regression SST coefficients, similarly to how it was done in the NOAA/NASA Pathfinder version 5.2 (PFV5.2) dataset. For data assimilation applications, especially those blending satellite and in situ SSTs, we recommend bias-correcting the RAN1 SSTs using the newly developed sensor-specific error statistics (SSES), which are reported in the product files. Relative performance of RAN1 and PFV5.2 SSTs is discussed. Work is underway to improve the calibration of AVHRR/3s and extend RAN time series, initially back to the mid-1990s and later to the early 1980s.

Keywords