Scientific Reports (Aug 2024)

Optimization of municipal solid waste incineration for low-NOx emissions through numerical simulation

  • Zhaobin Li,
  • Tang Wai Fan,
  • Mak Shu Lun,
  • Qingwen Li

DOI
https://doi.org/10.1038/s41598-024-69019-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract With urbanization, municipal solid waste (MSW) generation is increasing. Traditional landfill methods face land shortages and environmental pollution. Waste incineration, which reduces waste and recovers resources, has become a key management method. However, nitrogen oxides (NOx) produced during incineration severely impact the environment, requiring improved control technologies. This study optimized three denitrification technologies—air staging, flue gas recirculation (FGR), and selective non-catalytic reduction (SNCR)—using numerical simulations. The research provides support for improving waste incinerator efficiency and stability while reducing NOx emissions, aiding the sustainable development of waste incineration technology. By optimizing the primary and secondary air distribution ratios, the initial NOx generation was reduced by 8.39%. When 20% of the recirculated flue gas was introduced as secondary air, NOx generation was reduced by 23.54%, and boiler efficiency increased to 83.78%. The study examined the impact of different sludge mixing ratios on the temperature and NOx emissions within the context of municipal solid waste (MSW) incineration. Initially, the study aimed to address the environmental concerns of NOx emissions during the incineration process by exploring how the introduction of sludge at various mixing ratios would affect combustion parameters. The results showed that a sludge mixing ratio between 3 and 13% optimized the combustion process with 7% being the most effective in balancing temperature control and NOx emissions. Specifically, the best value of the sludge mixing ratio refers to achieving an optimal reduction in NOx emissions while maintaining stable incinerator operation. The chemical compositions of the sludge included key elements such as carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O), with approximate proportions of C: 31.2%, H: 4.7%, N: 2.5%, S: 0.6%, and O: 31.8%.

Keywords