Life (Oct 2023)
Biocontrol Potential of Serratia Marcescens (B8) and <i>Bacillus</i> sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil
Abstract
This study analyzed the antifungal potential of 16 bacterial strains isolated from mangrove sediment. Bacterial selection was conducted in a solid medium. This was followed by the production and extraction of metabolites using ethyl acetate to evaluate chitinase production, antifungal activity, and toxicity toward Allium cepa and Tenebrio molitor. Bacterial strains B8, B11, and B13 produced the largest inhibition halos (>30 mm) toward Fusarium solani, Fusarium oxysporum, and Rhizoctonia solani fungi. Strains B1, B3, B6, B8, B11, B13, B14, and B16 produced chitinases. In assays using liquid media, B8 and B13 produced the largest inhibition halos. Exposing the fungal inocula to metabolic extracts of strains B6, B8, B11, B13, B14, B15, and B16 caused micromorphological alterations in the inocula, culminating in the inhibition of R. solani sporulation and spore germination. Toxicity tests using Allium cepa and Tenebrio molitor revealed that the metabolites showed low toxicity. Six of the bacterial strains were molecularly identified to species levels, and a further two to genus level. These included Serratia marcescens (B8), which exhibited activity in all tests. Mangroves provide a useful resource for the isolation of microorganisms for biocontrol. Among the isolates, Serratia marcescens and Bacillus spp. showed the greatest potential to produce metabolites for use as biocontrol agents in agriculture.
Keywords