Clinical Hypertension (May 2017)

Systolic blood pressure but not electrocardiogram QRS duration is associated with heart rate variability (HRV): a cross-sectional study in rural Australian non-diabetics

  • Yvonne Yin Leng Lee,
  • Herbert F. Jelinek,
  • Craig S. McLachlan

DOI
https://doi.org/10.1186/s40885-017-0065-1
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background A positive correlation between ECG derived QRS duration and heart rate variability (HRV) parameters had previously been reported in young healthy adults. We note this study used a narrow QRS duration range, and did not adjust for systolic blood pressure. Our aims are to investigate associations between systolic blood pressure (SBP), QRS duration and HRV in a rural aging population. Methods A retrospective cross sectional population was obtained from the CSU Diabetes Screening Research Initiative data base where 200 participants had no diabetes or pre-diabetes. SBP data were matched with ECG derived QRS duration and HRV parameters. HRV parameters were calculated from R-R intervals. Resting 12-lead electrocardiograms were obtained from each subject using a Welch Allyn PC-Based ECG system. Results Pearson correlation analysis revealed no statistically significant associations between HRV parameters and QRS duration. No significant mean differences in HRV parameter subgroups across defined QRS cut-offs were found. SBP > 146 mmHg was associated with increasing QRS durations, however this association disappeared once models were adjusted for age and gender. SBP was also significantly associated with a number of HRV parameters using Pearson correlation analysis, including high frequency (HF) (p < 0.05), HFln (p < 0.02), RMSDD (p < 0.02) and non-linear parameters; ApEN (p < 0.001) were negatively correlated with increasing SBP while the low frequency to high frequency ratio (LF/HF) increased with increasing SBP (p < 0.03). Conclusions Our results do not support associations between ECG derived R-R derived HRV parameters and QRS duration in aging populations. We suggest that ventricular conduction as determined by QRS duration is independent of variations in SA-node heart rate variability.

Keywords