Metabolites (Feb 2023)

Plastid Phosphatidylglycerol Homeostasis Is Required for Plant Growth and Metabolism in <i>Arabidopsis thaliana</i>

  • Mingjie Chen,
  • Shiya Wang,
  • Yi Zhang,
  • Dongsheng Fang,
  • Jay J. Thelen

DOI
https://doi.org/10.3390/metabo13030318
Journal volume & issue
Vol. 13, no. 3
p. 318

Abstract

Read online

A unique feature of plastid phosphatidylglycerol (PG) is a trans-double bond specifically at the sn-2 position of 16C fatty acid (16:1t- PG), which is catalyzed by FATTY ACID DESATURASE 4 (FAD4). To offer additional insights about the in vivo roles of FAD4 and its product 16:1t-PG, FAD4 overexpression lines (OX-FAD4s) were generated in Arabidopsis thaliana Columbia ecotype. When grown under continuous light condition, the fad4-2 and OX-FAD4s plants exhibited higher growth rates compared to WT control. Total lipids were isolated from Col, fad4-2, and OX-FAD4_2 plants, and polar lipids quantified by lipidomic profiling. We found that disrupting FAD4 expression altered prokaryotic and eukaryotic PG content and composition. Prokaryotic and eukaryotic monogalactosyl diacylglycerol (MGDG) was up-regulated in OX-FAD4 plants but not in fad4-2 mutant. We propose that 16:1t-PG homeostasis in plastid envelope membranes may coordinate plant growth and stress response by restricting photoassimilate export from the chloroplast.

Keywords