Diagnostics (Dec 2023)
Experimental Examination of Conventional, Semi-Automatic, and Automatic Volumetry Tools for Segmentation of Pulmonary Nodules in a Phantom Study
Abstract
The aim of this study is to examine the precision of semi-automatic, conventional and automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The phantom is a life-size anatomical chest model with pulmonary nodules representing solid and subsolid metastases. Gross tumor volumes (GTVis) were contoured using various approaches: manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush function; (II) flood-fill function; and (III) image-thresholding function. Furthermore, a deep-learning algorithm for automatic contouring was applied (IV). An intermodality comparison of the above-mentioned strategies for contouring GTVis was performed. For the mean GTVref (standard deviation (SD)), the interquartile range (IQR)) was 0.68 mL (0.33; 0.34–1.1). GTV segmentation was distributed as follows: (I) 0.61 mL (0.27; 0.36–0.92); (II) 0.41 mL (0.28; 0.23–0.63); (III) 0.65 mL (0.35; 0.32–0.90); and (IV) 0.61 mL (0.29; 0.33–0.95). GTVref was found to be significantly correlated with GTVis (I) p p = 0.001, r = 0.916, and (IV) p p = 0.091, r = 0.595. The Sørensen–Dice indices for the semi-automatic tools were 0.74 (I), 0.57 (II) and 0.71 (III). For the semi-automatic, conventional segmentation tools evaluated, the adaptive-brush function (I) performed closest to the reference standard (0). The automatic deep learning tool (IV) showed high performance for auto-segmentation and was close to the reference standard. For high precision radiation therapy, visual control, and, where necessary, manual correction, are mandatory for all evaluated tools.
Keywords