Current Directions in Biomedical Engineering (Sep 2019)
Influence of ECG Lead Reduction Techniques for Extracellular Potassium and Calcium Concentration Estimation
Abstract
Chronic kidney disease (CKD) affects 13% of the worldwide population and end stage patients often receive haemodialysis treatment to control the electrolyte concentrations. The cardiovascular death rate increases by 10% - 30% in dialysis patients than in general population. To analyse possible links between electrolyte concentration variation and cardiovascular diseases, a continuous non-invasive monitoring tool enabling the estimation of potassium and calcium concentration from features of the ECG is desired. Although the ECG was shown capable of being used for this purpose, the method still needs improvement. In this study, we examine the influence of lead reduction techniques on the estimation results of serum calcium and potassium concentrations.We used simulated 12 lead ECG signals obtained using an adapted Himeno et al. model. Aiming at a precise estimation of the electrolyte concentrations, we compared the estimation based on standard ECG leads with the estimation using linearly transformed fusion signals. The transformed signals were extracted from two lead reduction techniques: principle component analysis (PCA) and maximum amplitude transformation (Max- Amp). Five features describing the electrolyte changes were calculated from the signals. To reconstruct the ionic concentrations, we applied a first and a third order polynomial regression connecting the calculated features and concentration values. Furthermore, we added 30 dB white Gaussian noise to the ECGs to imitate clinically measured signals. For the noisefree case, the smallest estimation error was achieved with a specific single lead from the standard 12 lead ECG. For example, for a first order polynomial regression, the error was 0.0003±0.0767 mmol/l (mean±standard deviation) for potassium and -0.0036±0.1710 mmol/l for calcium (Wilson lead V1). For the noisy case, the PCA signal showed the best estimation performance with an error of -0.003±0.2005 mmol/l for potassium and -0.0002±0.2040 mmol/l for calcium (both first order fit). Our results show that PCA as ECG lead reduction technique is more robust against noise than MaxAmp and standard ECG leads for ionic concentration reconstruction.
Keywords