PLoS ONE (Jan 2015)
Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings.
Abstract
Cucurbitacin I is a naturally occurring triterpenoid derived from Cucurbitaceae family plants that exhibits a number of potentially useful pharmacological and biological activities. However, the therapeutic impact of cucurbitacin I on the heart has not heretofore been reported. To evaluate the functional role of cucurbitacin I in an in vitro model of cardiac hypertrophy, phenylephrine (PE)-stimulated cardiomyocytes were treated with a sub-cytotoxic concentration of the compound, and the effects on cell size and mRNA expression levels of ANF and β-MHC were investigated. Consequently, PE-induced cell enlargement and upregulation of ANF and β-MHC were significantly suppressed by pretreatment of the cardiomyocytes with cucurbitacin I. Notably, cucurbitacin I also impaired connective tissue growth factor (CTGF) and MAPK signaling, pro-hypertrophic factors, as well as TGF-β/Smad signaling, the important contributing factors to fibrosis. The protective impact of cucurbitacin I was significantly blunted in CTGF-silenced or TGF-β1-silenced hypertrophic cardiomyocytes, indicating that the compound exerts its beneficial actions through CTGF. Taken together, these findings signify that cucurbitacin I protects the heart against cardiac hypertrophy via inhibition of CTGF/MAPK, and TGF- β/Smad-facilitated events. Accordingly, the present study provides new insights into the defensive capacity of cucurbitacin I against cardiac hypertrophy, and further suggesting cucurbitacin I's utility as a novel therapeutic agent for the management of heart diseases.