Translational Oncology (Jan 2024)

MALAT1 promotes FOXA1 degradation by competitively binding to miR-216a-5p and enhancing neuroendocrine differentiation in prostate cancer

  • Fanchang Zeng,
  • Daoyuan Li,
  • Xinli Kang,
  • Qinghui Wu,
  • Mi Song,
  • Zhewen Ou,
  • Zuobing Yang,
  • Jing Yang,
  • Liumei Luo

Journal volume & issue
Vol. 39
p. 101807

Abstract

Read online

Objectives: Prostate cancer (PC) is a leading cause of cancer-related death in males worldwide. Neuroendocrine differentiation (NED) is a feature of PC that often goes undetected and is associated with poor patient outcomes. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs/miRs), and messenger RNAs (mRNAs) play important roles in the development and progression of PC. Methods: In this study, we used transcriptome sequencing and bioinformatics analysis to identify key regulators of NED in PC. Specifically, we examined the expression of PC-related lncRNAs, miRNAs, and mRNAs in PC cells and correlated these findings with NED phenotypes. Results: Our data revealed that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and zinc finger protein 91 (ZFP91) were upregulated in PC, while miR-216a-5p was down-regulated. Ectopic expression of MALAT1 induced NED and promoted malignant phenotypes of PC cells. Furthermore, we found that MALAT1 competitively bound to miR-216a-5p, upregulated ZFP91, and promoted the degradation of forkhead box A1 (FOXA1), a key gene involved in NED of PC. Conclusion: Taken together, these results suggest that MALAT1 plays an oncogenic role in NED and metastasis of PC via the miR-216a-5p/ZFP91/FOXA1 pathway. Our study highlights the potential of targeting this pathway as a novel therapeutic strategy for PC.

Keywords