Heliyon (May 2024)
Performance analysis of DFIG support microgrid using GA optimized restricted Boltzmann Machine algorithm
Abstract
Voltage and reactive power regulation in a deregulated microgrid can be achieved by strategically placing the Static Synchronous Compensator (STATCOM) in coordination with other renewable energy sources, thus ensuring high-end stability and independent control. STATCOM plays a crucial role in effectively addressing power quality issues such as voltage fluctuation and reactive power imbalances caused by the intermittent nature of wind energy conversion systems. To successfully integrate STATCOM into the existing system, it is essential that the control system employed for STATCOM coordination aligns with the Doubly-Fed Induction Generator (DFIG) controller within the microgrid. Therefore, an efficient control algorithm is required in the microgrid, capable of coordinating with the DFIG controller while maintaining system stability. The utilization of a Genetic Algorithm (GA) in calibrating the Restricted Boltzmannn Machine (RBM) can streamline the process of determining optimal hyperparameters for specific tasks, eliminating the need for computationally intensive and time-consuming grid searches or manual tuning. This approach is particularly advantageous when dealing with large datasets within short time durations. In this research, a Simulink model comprising a DFIG-based microgrid and STATCOM has been developed to demonstrate the effectiveness of the proposed control system using RBM in managing STATCOM and facilitating microgrid operations.