Nature Communications (Sep 2024)
Phase transition kinetics of superionic H2O ice phases revealed by Megahertz X-ray free-electron laser-heating experiments
- R. J. Husband,
- H. P. Liermann,
- J. D. McHardy,
- R. S. McWilliams,
- A. F. Goncharov,
- V. B. Prakapenka,
- E. Edmund,
- S. Chariton,
- Z. Konôpková,
- C. Strohm,
- C. Sanchez-Valle,
- M. Frost,
- L. Andriambariarijaona,
- K. Appel,
- C. Baehtz,
- O. B. Ball,
- R. Briggs,
- J. Buchen,
- V. Cerantola,
- J. Choi,
- A. L. Coleman,
- H. Cynn,
- A. Dwivedi,
- H. Graafsma,
- H. Hwang,
- E. Koemets,
- T. Laurus,
- Y. Lee,
- X. Li,
- H. Marquardt,
- A. Mondal,
- M. Nakatsutsumi,
- S. Ninet,
- E. Pace,
- C. Pepin,
- C. Prescher,
- S. Stern,
- J. Sztuk-Dambietz,
- U. Zastrau,
- M. I. McMahon
Affiliations
- R. J. Husband
- Deutsches Elektronen-Synchrotron DESY
- H. P. Liermann
- Deutsches Elektronen-Synchrotron DESY
- J. D. McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh
- R. S. McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh
- A. F. Goncharov
- Carnegie Science, Earth and Planets Laboratory
- V. B. Prakapenka
- The University of Chicago, Center for Advanced Radiation Sources
- E. Edmund
- Carnegie Science, Earth and Planets Laboratory
- S. Chariton
- The University of Chicago, Center for Advanced Radiation Sources
- Z. Konôpková
- European XFEL
- C. Strohm
- Deutsches Elektronen-Synchrotron DESY
- C. Sanchez-Valle
- Universität Münster, Institut für Mineralogie, Corrensstraße 24
- M. Frost
- SLAC National Accelerator Laboratory
- L. Andriambariarijaona
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université
- K. Appel
- European XFEL
- C. Baehtz
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400
- O. B. Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh
- R. Briggs
- Lawrence Livermore National Laboratory
- J. Buchen
- Department of Earth Sciences, University of Oxford
- V. Cerantola
- European XFEL
- J. Choi
- Department of Earth System Sciences, Yonsei University
- A. L. Coleman
- Lawrence Livermore National Laboratory
- H. Cynn
- Lawrence Livermore National Laboratory
- A. Dwivedi
- European XFEL
- H. Graafsma
- Deutsches Elektronen-Synchrotron DESY
- H. Hwang
- Deutsches Elektronen-Synchrotron DESY
- E. Koemets
- Department of Earth Sciences, University of Oxford
- T. Laurus
- Deutsches Elektronen-Synchrotron DESY
- Y. Lee
- Department of Earth System Sciences, Yonsei University
- X. Li
- Deutsches Elektronen-Synchrotron DESY
- H. Marquardt
- Department of Earth Sciences, University of Oxford
- A. Mondal
- Universität Münster, Institut für Mineralogie, Corrensstraße 24
- M. Nakatsutsumi
- European XFEL
- S. Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université
- E. Pace
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh
- C. Pepin
- CEA, DAM, DIF, 91297 Arpajon, France; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes
- C. Prescher
- Institute of Earth and Environmental Sciences, University of Freiburg
- S. Stern
- Deutsches Elektronen-Synchrotron DESY
- J. Sztuk-Dambietz
- European XFEL
- U. Zastrau
- European XFEL
- M. I. McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh
- DOI
- https://doi.org/10.1038/s41467-024-52505-0
- Journal volume & issue
-
Vol. 15,
no. 1
pp. 1 – 13
Abstract
Abstract H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in lower pressure runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers.