Acta Polytechnica (Aug 2014)
BEYOND THE STANDARD MODEL OF THE DISC–LINE SPECTRAL PROFILES FROM BLACK HOLE ACCRETION DISCS
Abstract
The strong gravitational field of a black hole has distinct effects on the observed profile of a spectral line from an accretion disc near a black hole. The observed profile of the spectral line is broadened and skewed by a fast orbital motion and redshifted by a gravitational field. These effects can help us to constrain the parameters of a system with a black hole, both in active galactic nuclei and in a stellar-mass black hole. Here we explore the fact that an accretion disc emission can be mathematically imagined as a superposition of radiating accretion rings that extend from the inner edge to the outer rim of the disc, with some radially varying emissivity. In our work, we show that a characteristic double-horn profile of several radially confined (relatively narrow) accretion rings or belts could be recognized by the planned instruments onboard future satellites (such as the proposed ESA Large Observatory for X-ray Timing).