Radiology Research and Practice (Jan 2020)

Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT)

  • Ramin Ghasemi Shayan,
  • Maryam Oladghaffari,
  • Fakhrosadat Sajjadian,
  • Mona Fazel Ghaziyani

DOI
https://doi.org/10.1155/2020/1403957
Journal volume & issue
Vol. 2020

Abstract

Read online

CT and its comprehensive usage have become one of the most indispensable components in medical field especially in the diagnosis of several diseases. SECT and DECT have developed CT diagnostic potentials in several means. In this review article we have discussed the basic principles of single-energy and dual-energy computed tomography and their important physical differences which can cause better diagnostic evaluation. Moreover, different organs diagnostic evaluations through single-energy and dual-energy computed tomography have been discussed. Conventional or single-energy CT (SECT) uses a single polychromatic X-ray beam (ranging from 70 to 140 kVp with a standard of 120 kVp) emitted from a single source and received by a single detector. The concept of dual-energy computed tomography (DECT) is almost as old as the CT technology itself; DECT initially required substantially higher radiation doses (nearly two times higher than those employed in single-energy CT) and presented problems associated with spatial misregistration of the two different kV image datasets between the two separate acquisitions. The basic principles of single-energy and dual-energy computed tomography and their important physical differences can cause better diagnostic evaluation. Moreover, different organs diagnostic evaluations through single-energy and dual-energy computed tomography have been discussed. According to diverse data and statistics it is controversial to definitely indicate the accurate comparison of image quality and dose amount.