Advances in Bridge Engineering (Dec 2023)

A de-noising algorithm for bridge cable force monitoring data based on mathematical morphology

  • Chao Deng,
  • Yi Li,
  • Wei Zou,
  • Yuan Ren,
  • Ying Peng,
  • Zhuo’er Han

DOI
https://doi.org/10.1186/s43251-023-00109-x
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 12

Abstract

Read online

Abstract A mathematical morphological filter-based de-noising method is developed in this study for bridge cable force monitoring data. Structure elements, one of the most important parameters in the mathematical morphology, dominate de-noising effects. The de-noising effects subject to single structure element and multi-structure element filters are discussed based on the simulation signals. The results indicate that the de-noising effects by using the spherical structure element are better than using the straight line or rhombic structure element. Moreover, the multi-structure element filter outperforms the single one. Through simulation analysis, the de-noising performance of the low-pass filter, wavelet filter and morphological filter is compared. The results show that the performance of the wavelet and morphological filters is better than that of the low-pass filter. For low signal-to-noise signals, the performance of the wavelet filter is superior. With the increase of signal-to-noise ratio, the morphological filters show more advantages. Taking the cable force monitoring data of the 3rd Nanjing Yangtze River Bridge as an example, the de-noising performance of the wavelet and morphological filters is discussed. The results show that both the wavelet filters and morphological filters have satisfactory de-noising effects. The mathematical morphology method can provide an optional and effective de-nosing choice, which enriches the means of de-noising for bridge monitoring data.

Keywords